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Looking for a target in a visual scene becomes more
difficult as the number of stimuli increases. In a signal
detection theory view, this is due to the cumulative effect
of noise in the encoding of the distractors, and potentially
on top of that, to an increase of the noise (i.e., a decrease
of precision) per stimulus with set size, reflecting divided
attention. It has long been argued that human visual
search behavior can be accounted for by the first factor
alone. While such an account seems to be adequate for
search tasks in which all distractors have the same, known
feature value (i.e., are maximally predictable), we recently
found a clear effect of set size on encoding precision when
distractors are drawn from a uniform distribution (i.e.,
when they are maximally unpredictable). Here we
interpolate between these two extreme cases to examine
which of both conclusions holds more generally as
distractor statistics are varied. In one experiment, we vary
the level of distractor heterogeneity; in another we
dissociate distractor homogeneity from predictability. In
all conditions in both experiments, we found a strong
decrease of precision with increasing set size, suggesting
that precision being independent of set size is the
exception rather than the rule.

Introduction

In natural environments, animals constantly have to
attend to a large number of stimuli simultaneously. A
central question whose history spans the history of
psychology is how humans divide their attention across
multiple stimuli. An important aspect of this question is
whether the quality of the representation of an
individual stimulus is independent of the number of
attended stimuli (Broadbent, 1958; Townsend, 1974).

The Scottish philosopher Sir William Hamilton (1788–
1856) clearly articulated his belief that it is not: ‘‘The
greater the number of objects among which the
attention of the mind is distributed, the feebler and less
distinct will be its cognizance of each’’ (Hamilton,
1859). More than a century later, rigorous psycho-
physical studies reached the opposite conclusion: For
example, Palmer’s work on simple visual search
demonstrated that human performance is well de-
scribed by a mathematical model in which the quality
(precision) with which a stimulus is encoded is
independent of the number of stimuli (Palmer, Vergh-
ese, & Pavel, 2000). Recently however, we showed that
Palmer’s conclusion is not universal but depends on the
statistics of the distractor stimuli (Mazyar, van den
Berg, & Ma, 2012). This raises the question which
answer—dependence or independence of precision on
set size—is the rule and which the exception; we will
explore this question here.

Visual search is an oft-used paradigm for measuring
the effects of set size on precision. Telling whether a
target object is present among a set of distractor objects
generally becomes more difficult as the number of
stimuli increases. This can be understood from the
premise that stimuli are encoded in a noisy manner. As
more distractors are present in a scene, the noise they
contribute is ‘‘drowning out’’ the target signal. This
effect has been formalized in Bayes-optimal (Ma,
Navalpakkam, Beck, van den Berg, & Pouget, 2011;
Mazyar et al., 2012) and other signal detection theory
models (Eckstein, Thomas, Palmer, & Shimozaki, 2000;
Nolte & Jaarsma, 1966; Palmer, Ames, & Lindsey,
1993; Palmer et al., 2000; Rosenholtz, 2001; Verghese,
2001; Vincent, Baddeley, Troscianko, & Gilchrist,
2009).
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A second effect that might contribute to the decrease
of performance with set size is the one mentioned
above: The amount of noise in the encoding of a
stimulus might increase with the number of stimuli,
perhaps due to the spreading of an attentional resource
(Palmer, 1990; Shaw, 1980). As a consequence, the
precision of encoding an individual stimulus would
decrease. This phenomenon—referred to as a ‘‘resource
limitation’’ or also ‘‘limited capacity’’ (Townsend,
1974), although it is not a limit on the number of
stimuli that is encoded—would cause performance to
drop faster as a function of set size than it would due to
the first effect alone. Many studies have reported,
explicitly or implicitly, that the second effect is not
needed to explain human performance, as long as no
memory component is involved (Baldassi & Burr, 2000;
Busey & Palmer, 2008; Palmer, 1994; Palmer et al.,
1993; Palmer et al., 2000), thereby essentially pro-
claiming Hamilton wrong.

In 2012 we questioned the generality of this
conclusion (Mazyar et al., 2012). We found that
precision was independent of set size when the
distractors within a given display were identical to each
other (homogeneous) but not when they differed
(heterogeneous). In the homogeneous condition, dis-
tractors were not only the same within a display, but
also across trials. In the heterogeneous condition,
distractors were drawn independently from a uniform
distribution at every location and across trials, and

were therefore both maximally heterogeneous and
maximally unpredictable.

A way to conceptualize the space of distractor
statistics is shown in Figure 1: One axis represents
distractor heterogeneity within a display, the other
distractor predictability across trials. In Mazyar et al.
(2012), we contrasted two extremes in this space,
represented by the bottom-left and top-right corners.
Based on the results reported in that paper, we cannot
determine whether the established conclusion—inde-
pendence—or the new conclusion—dependence—is
more generally valid. Therefore, we will here further
explore this space. In Experiment 1, we test points
along the diagonal by varying the degree of heteroge-
neity. In Experiment 2, we dissociate homogeneity from
predictability by using unpredictable, homogeneous
distractors. To anticipate our results, in all conditions
tested, we find a decrease of precision with set size,
suggesting that Hamilton’s speculation states the rule
rather than the exception.

Experimental methods

Subjects

Six subjects (four female, two male) participated in
Experiment 1. Fifteen subjects participated in Experi-
ment 2, but data from two subjects were excluded from
the analysis because they performed at chance in one or
more conditions. This left us with 13 subjects (six
female, seven male). All subjects had normal or
corrected-to-normal acuity and gave informed consent.

Apparatus and stimuli

Subjects viewed the stimuli on a 21-inch LCD
monitor (60 Hz refresh rate) at a distance of
approximately 60 cm. The background luminance was
33.1 cd/m2. Stimuli consisted of Gabor patches with a
spatial frequency of approximately 1.6 cycles/deg, a
Gaussian envelope of approximately 0.29 deg, and a
peak luminance of 122 cd/m2.

Procedure

Experiment 1: Effect of level of heterogeneity

Each trial started with a fixation cross presented at
the center of the screen (500 ms), followed by a display
containing N stimuli (83 ms; five frames) (Figure 2a).
Set size N was pseudorandomly chosen to be 1, 2, 4, or
8. Stimuli were placed 458 apart on an imaginary circle
at the center of the screen with a radius of 58 of visual

Figure 1. How does precision depend on set size? Each box in

the diagram represents a distractor condition in single-target

visual search. The gray boxes represent conditions for which set

size effects on precision have been studied previously:

homogeneous distractors that are predictable on every trial

(bottom left) and maximally heterogeneous distractors that are

also maximally unpredictable (top right). In this paper, we

interpolate between these conditions (Experiment 1) and

dissociate the factors (Experiment 2).
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angle. On target-present trials, the stimulus set con-
sisted of one target stimulus and N � 1 distractor
stimuli. On target-absent trials, it consisted of N
distractor stimuli. The target stimulus was always
vertical (denoted sT and defined as 08) and each
distractor orientation si was independently drawn from
a Von Mises distribution centered at sT:

pðsijTi ¼ 0Þ ¼ 1

pI0ðjDÞ
ejD cos2ðsi�sTÞ ð1Þ

where Ti ¼ 0 refers to a distractor being present at the
ith location, and I0 is the modified Bessel function of the
first kind of order 0. The concentration parameter of
this distribution, jD, determined the level of heteroge-
neity in a display and was different across conditions:
jD¼ 0 (high heterogeneity; uniform distribution), jD¼
1 (medium heterogeneity), or jD¼8 (low heterogeneity;
Figure 2b and c). The concentration parameter is
inversely and monotonically related to the circular
variance of the distractors. The observer reported by
pressing a key whether or not the target was present
and received immediate correctness feedback.

This design is based on that by Vincent et al. (2009),
but we use different concentration parameters; in
particular, we include a uniform distribution (jD¼0) to
relate to our earlier results. Vincent et al. fixed set size
at four, while our focus is on the effect of set size. We
will also test a different set of models, specifically
Bayes-optimal models and variable-precision models,
which we will compare to Vincent et al.’s model.

Each subject completed six sessions, each featuring a
single heterogeneity condition and consisting of four
blocks of 175 trials. The order of the conditions used
across the six sessions was high, medium, low, low,
medium, high. At the beginning of each session,
subjects were instructed in multiple ways about the
distractor distribution they were going to experience. A
plot of the distribution was shown on the screen along
with 100 randomly drawn sample distractors; the
meaning of the plot and the samples was explained
verbally to the subject in the first three sessions. After
seeing the plot and samples, the subject performed 100
practice trials; these were left out of our analyses, but
were otherwise identical to the ‘‘real’’ trials.

Experiment 2: Heterogeneous versus homogeneous,
unpredictable distractors

Experiment 2 consisted of two conditions, ‘‘heteroge-
neous’’ and ‘‘homogeneous’’ (Figure 7). The heteroge-
neous condition was identical to any one of the
conditions in Experiment 1, except that the Von Mises
distribution from which each distractor orientation was
drawn had a concentration parameter of jD¼ 32.8
(corresponding to about 58). The homogeneous condition
was identical to the heterogeneous condition, except that
on each trial a single distractor orientation was drawn
from the jD¼ 32.8 Von Mises distribution and assigned
to all distractors. Set sizes were 1, 2, 4, and 8 in the
homogeneous condition and 1, 2, 3, and 4 in the
heterogeneous condition; the latter was different from

Figure 2. Experiment 1. (a) Time course of a single trial. (b) Von Mises distributions from which the distractor orientations were drawn

in the three conditions (low, medium, and high heterogeneity). (c) Sample search displays in the three conditions. Displays are not to

scale.
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Experiment 1 because the higher concentration param-
eter made this condition more difficult. Set size 1 trials
had identical statistics in the two conditions. Each subject
performed one session in the homogenous condition,
followed by two sessions in the heterogeneous condition,
followed by one session in the homogeneous condition.
Each session consisted of four blocks of 175 trials.

The key difference with the homogeneous condition
in our earlier work (Mazyar et al., 2012) is that in that
study, the common distractor orientation was always 58
clockwise relative to the target, whereas in the current
study, the common distractor orientation was unpre-
dictable from trial to trial. In the earlier study, there
were only eight different stimulus displays in the entire
homogeneous condition (target present/absent, and four
set sizes). By contrast, in the current experiment, the
target-distractor orientation difference varies, making
each trial unique and thus producing a richer data set.

Models

Experiment 1

Encoding model: Equal and variable precision

We model the observer’s behavior as consisting of an
encoding stage followed by a decision stage. In the
encoding stage, stimuli are internally represented, or
‘‘measured,’’ in a noisy manner. We denote by (s1, . . .,
sN) the stimulus orientations on a given trial and by (x1,
. . ., xN) the corresponding noisy measurements. We
assume that the measurements are drawn from
independent Von Mises distributions on [0, p),

pðxijsiÞ ¼
1

pI0ðjiÞ
eji cos2ðsi�xiÞ ð2Þ

The higher the concentration parameter ji, the less
variable the measurements are for a given stimulus. In
the limit of large ji, the Von Mises distribution
becomes a Gaussian distribution with ri

2¼ 1/(4ji):

pðxijsiÞ� ejicos2ðxi�siÞ’ ejið1�1
2ð2ðxi�siÞÞ

2Þ � e
�ðxi�siÞ

2

2r2
i :

As in previous studies, we define encoding precision
as Fisher information, denoted J, which is a general
measure of the amount of information that a random
variable (xi in our case) carries about an unknown
parameter upon which this variable depends (si in our
case). Fisher information is related to the Von Mises
concentration parameter through

J ¼ jI1ðjÞ
I0ðjÞ

;

where I1 is the modified Bessel function of the first kind

of order 1 (Keshvari, van den Berg, & Ma, 2012;
Mazyar et al., 2012; van den Berg, Shin, Chou, George,
& Ma, 2012).

Probabilistic models of perception typically assume
that encoding precision is constant across stimuli and
trials, as long as the physical conditions are held fixed.
We recently showed, however, that precision in a visual
search task varies across trials and stimuli (Mazyar et
al., 2012). Therefore, we will here consider both an
equal-precision (EP) and variable-precision (VP) mod-
el. In the EP model, all stimuli in a display are encoded
with the same precision J, whose value we fit separately
at each set size. In the VP model, we assume that J is a
gamma-distributed random variable with a mean that
we fit separately for each set size and a scale parameter
s that we assume to be constant across set size.

Optimal model

Our main model for the decision stage is a Bayesian
model for heterogeneous visual search (Ma et al., 2011;
Mazyar et al., 2012). Let C¼ 0 denote the state of the
target being absent, C ¼ 1 that of the target being
present. The observer responds ‘‘target present’’ when,
given the evidence in (x1, . . ., xN), the posterior
probability of target presence is greater than that of
target absence, p(C¼ 1 j x1, . . ., xN) . p(C¼ 0 j x1, . . .,
xN). A lengthy but straightforward derivation (see
Appendix 1) reveals that this is equivalent to

ppresent
1� ppresent

1

N

XN
i¼1

di . 1 ð3Þ

where ppresent is the observer’s prior belief of the target
being present and

di ¼ ·
I0ðjDÞeji cos2ðxi�sTÞ

I0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
i þ j2

D þ 2jijDcos2ðxi � sTÞ
q �

is the likelihood ratio of target presence at location i.

To gain some intuition for Equation 3, consider the
case that ppresent ¼ 0.5 and ji ¼ 0 for all i; this means
that no information is available. In this case, the
posterior ratio (the left-hand side of Equation 3) equals
1. This is as expected because it means that the
posterior probability that the target is present is 0.5. In
another special case, jD ¼ 0 (high-heterogeneity
condition; uniform distractor distribution), the poste-
rior ratio simplifies to

ppresent
1� ppresent

1

N

XN
i¼1

ejicos2ðxi�sTÞ

I0ðjiÞ
;

which we studied before (Ma et al., 2011; Mazyar et al.,
2012).
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When fitting the model, we leave open the possibility
that ppresent is not equal to 0.5, reflecting that the
observer may not use the true frequencies of target-
absent and target-present trials during inference. A
value of ppresent greater than 0.5 will make the observer
respond ‘‘target present’’ in some cases when the
evidence points towards target absence. This aspect of
the model makes it strictly speaking suboptimal, and
large deviations from 0.5 will make the observer stray
far from performance maximization. However, since
the observer otherwise accurately takes into account
the structure of the generative model, we will for
convenience still refer to this Bayesian model as
optimal.

Maxd model

Vincent et al. (2009) proposed an alternative model
in which the observer computes the likelihood ratio of
target presence at each individual location (for the ith

location, this ratio would be the summand in Equation
3), and responds ‘‘target present’’ if the largest of these
ratios exceeds a fixed decision criterion k:

argmax
i

di . k ð4Þ

with di as defined above. Contrary to the claims of
Vincent et al. (2009), this is not an optimal model,
because the decision rule is not equivalent to Equation
3 with ppresent ¼ 0.5. It is not clearly Bayesian either,
because it is not obvious that there exists a generative
model for which the decision rule maximizes perfor-
mance (Ma, 2012). However, it is a very plausible
model for human behavior.

Lapse rate

Due to lapses of attention, a certain proportion of
trial responses may have been random guesses. We
allow for this possibility by including a lapse rate in the
models: on each trial, there is a probability k that the
observer produces a random guess instead of respond-
ing according to the decision rule of the respective
model. This parameter can also capture unintended key
presses.

Summary of models

We have defined two encoding models—EP and
VP—and two decision models—optimal (O) and maxd
(M). This gives rise to a total of four models, which we
will name EPO, EPM, VPO, and VPM. These models
have six, six, seven, and seven free parameters,
respectively: four (mean) precision parameters, a lapse
rate parameter, a scale parameter in the VP models, a

prior parameter in the optimal models, and a decision
criterion in the maxd models.

Experiment 2

In Experiment 2, we only consider the winning
model for Experiment 1, namely the VPO model. In the
heterogeneous condition, the VPO model is identical to
that in Experiment 1. In the homogenenous condition,
the model is different because a common distractor
orientation is drawn from a Von Mises distribution on
each trial. The optimal decision rule is then to respond
‘‘target present’’ when

ppresent
1� ppresent

1

N

XN
i¼1

eji cos2ðxi�sTÞ I0ðjC¼1;iÞ
I0ðjC¼0Þ

. 1 ð5Þ

where

jC¼1;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j6¼i

jjcos2xj

 !2

þ
X
j 6¼i

jjsin2xj

 !2
vuut

jC¼0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼0

jjcos2xj

 !2

þ
XN
j¼0

jjsin2xj

 !2
vuut ;

ð6Þ
(see Appendix 1). Here, all sums start at 0, and we have
defined x0¼ sT and j0¼jD. When ppresent¼0.5 and ji¼
0 for all i, the posterior ratio again equals 1.

Based on our findings in Experiment 1, we further
specified the VPO model in two ways. First, we describe
mean precision as a function of set size by a power law,
J¼ J1N

a. Second, we fixed the lapse rate to 0. We fitted
the homogeneous and heterogeneous conditions to-
gether, assuming that ppresent and J1 are shared between
conditions. For J1, we make this assumption because at
set size 1, the stimulus statistics are identical in the two
conditions. The power a and the scale parameter s can
vary between the conditions. Thus, in this experiment,
the VPO model has six free parameters to fit both
conditions.

Results

Experiment 1

In this experiment, we tested the effect of the level of
distractor heterogeneity within a display on the
relationship between precision and set size in detection
of a single target. Figure 3 shows subjects’ perfor-
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mance. A two-way repeated-measures ANOVA showed
a significant main effect of session heterogeneity level
(jD) on performance, F(2, 10)¼ 19.5, p , 0.001, but no
effect of session number, F(1, 5)¼2.73, p¼0.16, and no
interaction, F(2, 10)¼ 2.06, p¼ 0.18 (Figure 3a).
Moreover, at every level of heterogeneity, hit rate
decreased (one-way repeated-measures ANOVA, F(3,
15) . 14.7, p , 0.001) and false-alarm rate increased

(F(3, 15) . 21.2, p , 0.001), as a function of set size
(Figure 3b).

We fitted the models using maximum-likelihood
(ML) estimation, for each subject separately (see
Appendix 2 for an overview of parameter estimates).
To examine how well the models fit the subject data, we
computed predicted hit and false-alarm rates under
each model using the ML parameter estimates. All four

Figure 3. Data from Experiment 1. Here and elsewhere, error bars indicate 1 SEM. (a) Mean performance for the three heterogeneity

conditions. Each condition was presented in two out of six sessions. (b) Hit and false-alarm rates as a function of set size for each

condition.

Figure 4. VPO model fits in Experiment 1. (a) Hit and false-alarm rates in the three heterogeneity conditions. Here and elsewhere,

shaded areas indicate 1 SEM in the model, and numbers indicate the root-mean-square error between model and data, averaged

over subjects. (b) Proportion ‘‘target present’’ responses as a function of the minimum target-distractor difference, separately for

target-present (blue) and target-absent (red) trials. For set size 1, there are no distractors on target-present trials. Note that the values

on the x-axes differ between rows.
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models provide good fits to the hit and false-alarm rates
(Figure 4a and Supplementary Figures S1 through
S3a). A more detailed view of the data and model
predictions can be obtained by plotting the proportion
‘‘target present’’ responses as a function of the
minimum orientation difference between the target and
any distractor (Figure 4b and Supplementary Figures
S1 through S3b). These plots show that the proportion
of ‘‘target present’’ responses decreases as the minimum
target-distractor difference increases, both for target-
present and target-absent trials. This is expected,
because the larger the minimum target-distractor
difference, the more dissimilar to the target the
distractors tend to be.

To quantify the goodness of fit of the four models,
we computed the Bayesian Information Criterion
(BIC; Schwartz, 1978) for each subject at every level
of heterogeneity (Figure 5). Out of 18 comparisons
(six subjects · three conditions), the VPM model
wins nine, the VPO model eight, the EPM model
one, and the EPO model zero times. Hence, both EP
models perform poorly on these data, but we cannot
distinguish the VPO and VPM models. Therefore,
we will consider both VP models in our examination
of the relation between encoding precision and set
size.

Figure 6 shows the estimates of mean precision (J) as
a function of set size in both VP models. For each level
of heterogeneity, the relationship between set size and

mean precision is fitted well by a power-law function
with a power close to�1 in both models (�0.95 6 0.26,
�1.08 6 0.20, and�0.91 6 0.08 for jD ¼ 0, 1, and 8,
respectively in the VPO model, and�1.06 6 0.17,
�1.17 6 0.13, and�1.34 6 0.06 in the VPM model;
mean and SEM across subjects), similar to our previous
results (Mazyar et al., 2012). We also tested a variant of
the VPO model with the prior probability ppresent fixed
to 0.5. Paired t tests showed no significant differences
between the powers obtained with this model and those
obtained with the ‘‘fixed prior’’ model (p¼ 0.41, p¼
0.48, and p ¼ 0.71 for jD ¼ 0, 1, and 8, respectively).

Experiment 2

In Experiment 2, we aimed to dissociate distractor
homogeneity from distractor predictability in set size
effects on precision. We did this by making distractors
homogeneous, but with a common orientation that
varied across trials (Figure 7). The control condition
was identical except that distractors were heteroge-
neous.

We found a significant effect of set size on hit rate
(Figure 8a) in both the homogeneous, F(3, 36)¼ 15.7, p
, 0.001, and heterogeneous, F(3, 36)¼ 30.2, p , 0.001,
conditions. There was also a significant effect of set size
on the false alarm rates in both conditions (homoge-

Figure 5. Model comparison results for Experiment 1. Shown are BIC values of the EPO, EPM, and VPM models relative to the VPO

model, for each subject (left) as well as the group averages (right). Each row corresponds to a heterogeneity condition. Higher BIC

values mean worse fits.
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neous: F(3, 36)¼3.73, p , 0.05; heterogeneous: F(3, 36)
¼ 6.90, p , 0.01).

We fitted the VPO model to both conditions
simultaneously. It provides good fits to hit and false-
alarm rates (Figure 8a) and somewhat less good fits to

the proportion of ‘‘target present’’ responses as a
function of the target-distractor difference (Figure 8b).
In those responses, both in the data and in the model,
there is a dip in the target-present curves, especially
noticeable at set sizes 4 and 8. This dip results from two
opposing effects. First, if the distractor orientation is
close to that of the target, the measurements of the
distractors contribute to evidence for target presence;
this effect diminishes with increasing target-distractor
difference. Second, if the distractor orientation is very
different from the target, it is easy to infer that one
stimulus is different from all others and must therefore
be the target; this effect diminishes with decreasing
target-distractor difference. In the model, these coun-
teracting effects are seen in the two factors in the
summand of Equation 5: eji cos2ðxi�sTÞ accounts for the
‘‘target similarity effect,’’ whereas I0(jC¼1,i)/I0(jC¼0)
reflects the ‘‘oddball effect.’’ The former is obvious: The
smaller the difference between the measurement xi and
the target orientation sT, the larger eji cos2ðxi�sTÞ. The
latter requires a bit more thought. If we represent the ith

measurement as a vector in the plane with angle 2xi and
length ji, then jC¼0, given by the second line of
Equation 6, is the length of the vector sum of all
measurements, and jC¼1,i, given by the first line, is the
length of the vector sum of all measurements except for
the ith one. These lengths are greater when the vectors
in the sum are more aligned with each other, that is,
when the measurements are closer to each other.
Therefore, the factor I0(jC¼1,i)/I0(jC¼0) is the answer to
the question: If I were to leave out the ith measurement,
how strongly aligned would the remaining measure-
ments be relative to the original alignment of all
measurements? If the ith measurement is different from
all others, as will often be the case if it was produced by
the target, then alignment would increase by leaving it
out, and the factor I0(jC¼1,i)/I0(jC¼0) would be greater
than 1. Therefore, this ratio measures the strength of
the evidence that the ith stimulus is an odd element in

Figure 6. Dependence of precision on set size in Experiment 1.

Estimates of mean precision parameter at each set size in the

VPO (black) and VPM (red) models. The right y-axis shows the

corresponding standard deviation of the Gaussian noise

distributions, computed using the mapping r2 ¼ 1/(4J) (see

Models). The shades represent the best-fitting power law (mean

over subjects; width indicates 1 SEM).

Figure 7. Experiment 2. (a) Time course of a trial (heterogeneous condition). Distractor orientations were drawn from a Von Mises

distribution with a concentration parameter jD ¼ 32.8 (corresponding to 58; inset). Subjects judged whether a vertical target was

present among the stimuli. (b) In the heterogeneous condition, distractor orientations were drawn independently. In the

homogeneous condition, a common distractor orientation was drawn on each trial and assigned to all distractors on that trial.
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the display. In Experiment 1, since the distractors
always differed amongst each other, there is no such
factor.

The maximum-likelihood estimates of the power in
the assumed power law relationship between mean
precision and set size were �0.83 6 0.11 (homoge-
neous) and �0.85 6 0.13 (heterogeneous), which are
not significantly different from each other (t(12) =
0.10, p = 0.92).

Mean precision and standard deviation of the noise
are shown as a function of set size in Figure 9a. Power
estimates across all conditions of Experiments 1 and 2
are compared in Figure 9b, presenting a consistent

picture: All powers are clearly negative. Parameter
estimates for Experiment 2 are listed in Appendix 2.

Discussion

Understanding how sensory precision depends on set
size is essential for understanding how humans divide
their attention over multiple objects, especially in split-
second decisions. Here, we extended a previous study to
examine this relationship under two manipulations of
distractor statistics: changing the degree of heteroge-
neity and using homogeneous but unpredictable

Figure 8. Data and VPO model fits from Experiment 2. Top row: homogeneous; bottom row: heterogeneous. (a) Hit and false alarm:

data (circles and error bars) and VPO model fits (shaded areas). (b) Proportion ‘‘target present’’ responses as a function of the target-

distractor difference, separately for target-present (blue) and target-absent (red) trials. For set size 1, there are no distractors on

target-present trials. Note that the values on the x-axes and the set sizes are different in the homogeneous and heterogeneous

conditions.

Figure 9. Comparison between conditions of the relationship between mean precision and set size in the VPO model. (a) Mean

precision estimates for the heterogeneous (black) and homogeneous (red) conditions of Experiment 2. (b) Estimates of the power in

the relationship between mean precision and set size for all conditions in Experiments 1 and 2.
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distractors. To our surprise, we found a steep decrease
of mean precision with set size in all conditions, with
powers in the range of�1.3 to�0.8. This suggests that
our earlier interpretation that the critical factor is
whether distractors are heterogeneous or homogeneous
(Mazyar et al., 2012) must be revised, and leads us to a
new hypothesis: Precision is independent of set size
(‘‘capacity is unlimited’’) only when distractors are
predictable. Stated otherwise, unless visual displays are
largely predictable across trials, the spreading of visual
attention has detrimental effects on the quality of
encoding of each stimulus.

We should examine whether previous literature is
consistent with the new hypothesis. Many earlier
studies (Baldassi & Burr, 2000; Busey & Palmer, 2008;
Mazyar et al., 2012; Palmer, 1994; Palmer et al., 1993;
Palmer et al., 2000) reported no effect of set size on
precision at least in some conditions. Except for two,
these studies all used completely predictable distractors.
The first exception was experiment 4 in Palmer (1994),
in which distractors were ‘‘T’’ shapes that could be
rotated 08, 908, 1808, or 2708. The task-relevant feature
was the point at which the two line segments
intersected. The distractors always had one line
intersecting the other perfectly in the middle (thus the
‘‘T’’ shape) while the target could have one line
intersecting the other line anywhere from one third the
distance from the end of the line (offset ‘‘T’’ shape) to
the end of the line (‘‘L’’ shape). Thus, although the
rotations caused variability, the distractors were
predictable in the task-relevant feature. The second
exception was experiment 3 of Mazyar et al. (2012),
where the target orientation was on every trial drawn
from a uniform distribution and identified to the
subject through a pre-cue. Distractors were homoge-
neous and always tilted 58 clockwise with respect to the
target orientation. Although the distractor orientation
thus varied from trial to trial, observers did have
enough information to predict this orientation after
seeing the target cue. Altogether, we conclude that
earlier studies are consistent with the predictability
hypothesis.

In the above-mentioned studies that reported inde-
pendence, distractors were not only predictable and
homogeneous but also linearly separable between the
target orientation and the set of possible distractor
orientations (Bauer, Jolicoeur, & Cowan, 1996;
D’Zmura, 1991). An account in which precision is
independent of set size whenever distractor orienta-
tions—either homogeneous or heterogeneous—are
drawn from a distribution that has mass only on ‘‘one
side’’ of the target, as introduced by Rosenholtz (2001),
is conceivable. Based on her results, however, one
might expect a decrease of precision with set size as
well. A concern is that such distractor distributions
might be very difficult for subjects to learn.

In Experiment 2 we used homogeneous, unpredict-
able distractors to dissociate homogeneity from pre-
dictability. Further dissociation is possible by using
heterogeneous, predictable distractors. In such a
paradigm, which would correspond to the below-
diagonal squares in the diagram in Figure 1, there
would be variability in distractor orientations within a
display but little or none across trials. In the extreme,
distractors would be drawn from a uniform distribution
but remain the same across trials. This seems an
unnatural form of search but it would provide an
independent test of our hypothesis.

A full description of the relationship between
precision and set size requires filling two more squares
in the diagram in Figure 1, in the top row. The top left
square represents a condition similar to the homoge-
neous condition in Experiment 2 but with distractor
orientations drawn from a uniform distribution,
making the task too easy for subjects without
additional modifications. When subject performance is
near ceiling, models will generally be difficult to
distinguish. The top center square could be realized by
partially correlating the distractor orientations within a
given display: One can think of the correlations
between the distractor orientations within a display
increasing within each row from zero on the diagonal
(independent draws) to maximal on the left edge
(homogeneous distractors). This case requires a study
of its own, since it involves the question of whether
humans can learn to take into account partial stimulus
correlations in visual search.

If the hypothesis that precision is independent of set
size only when distractors are predictable is confirmed,
an important question is why this would happen. One
reason we can imagine is that under complete
predictability, the observer can form an internal
template consisting of all distractors before the search
display appears, and simply detect deviations from
this template. This might be neurocomputationally
more efficient than scrutinizing all stimuli, and this
efficiency might translate to set-size independent
estimated precision. Alternatively, it could be that
every appearance of a set size effect on precision is the
guise of an underlying form of suboptimal inference
that the observer performs on measurements that are
not subject to a set size effect (Beck, Ma, Pitkow,
Latham, & Pouget, 2012). While this notion is
conceptually appealing, it remains to be seen whether
a plausible suboptimal inference model can be
formulated that accounts for the data. Moreover, it
would have to be explained why this form of
suboptimality affects predictable displays much less
than unpredictable ones.

Keywords: visual search, visual attention, capacity
limitations, precision, Bayesian inference
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Appendix 1: Optimal model

Optimal model

Deriving predictions of the optimal-observer model
consists of three steps: defining the generative model,
computing the observer’s decision rule (to be applied
on each trial), and computing predictions for response
probabilities across many trials. The generative
models of Experiments 1 and 2 are shown in Figure
A1. Each variable is a node. Variables are as follows:
C (target presence, 0 or 1), Ti (target presence at the i

th

location, 0 or 1), si (orientation at the ith location), and
xi (measurement of orientation at the ith location). The
homogeneous condition in Experiment 2 has an extra
variable, sD (common distractor orientation). We
denote the vector (T1,. . ., TN) by T, and similarly for s
and x. A probability distribution is associated with
each variable in the generative model. The equations
are given in Figure A1. Some distributions are
common to both the heterogeneous and the homoge-
neous condition. In the order of Figure A1, these
distributions reflect that there is a probability that the
target is present (ppresent); that if the target is absent, it
is absent everywhere; that if the target is present, it is
only at one location, selected with equal probability;
that the target always has value sT; that the noise
corrupting a measurement is independent across
locations; and that it follows a Von Mises distribution
centered at the true orientation (Equation 2). A few
distributions are specific to the experiment. For
heterogeneous distractors, these reflect that given
target presence at a location, the orientation at that
location is not influenced by other locations, and that
each distractor orientation is drawn from a Von Mises
distribution centered at sT (Equation 1). For homo-
geneous distractors, the distributions reflect that a
common distractor orientation sD is drawn from a
Von Mises distribution centered at sT, that locations
are ‘‘coupled’’ through this common orientation, and

that every distractor orientation is equal to sD. In both
conditions, the optimal decision rule is to respond
‘‘target present’’ if p(C¼ 1jx)/p( C¼ 0jx) . 1. We will
now work out this expression using the respective
generative models.

Derivation of the optimal decision rule for the
heterogeneous conditions

For the scenario of heterogeneous distractors inde-
pendently drawn from a distribution p(si j Ti ¼ 0), a
single target with value sT, and a general noise
distribution p(xi j si), the posterior ratio is equal to (Ma
et al., 2011)

pðC ¼ 1jxÞ
pðC ¼ 0jxÞ

¼ ppresent
1� ppresent

1

N

XN
i¼1

pðxijsi ¼ sTÞZ
pðxijsiÞpðsijTi ¼ 0Þdsi

:

The summand is the likelihood ratio of target
presence at the ith location. In our task, the integral in
the denominator can be evaluated asZ

pðxijsiÞpðsijTi ¼ 0Þdsi

¼
Z

1

pI0ðjiÞ
ejicos2ðxi�siÞ 1

pI0ðjDÞ
ejicos2ðsi�sTÞdsi

¼ I0ðjcombinedÞ
pI0ðjiÞI0ðjDÞ

;

where jcombined ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
i þ j2

D þ 2jijD cos2ðxi � sTÞ
q

.
Thus, the posterior ratio is

pðC ¼ 1jxÞ
pðC ¼ 0jxÞ ¼

ppresent
1� ppresent

1

N

XN
i¼1

1

pI0ðjiÞ
ejicos2ðxi�sTÞ

I0ðjcombinedÞ
pI0ðjiÞI0ðjDÞ

¼ ppresent
1� ppresent

·
1

N

XN
i¼1

I0ðjDÞejicos2ðxi�sTÞ

I0ðjcombinedÞ
:

Derivation of the optimal decision rule for the
homogeneous condition

The posterior ratio is obtained by marginalizing over
T, s, and sD:

pðC ¼ 1jxÞ
pðC ¼ 0jxÞ
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¼ ppresent
1� ppresent

·

1

N

XN
i¼1

ZZ
pðxjsÞpðsjsD;T ¼ 1iÞpðsDÞdsdsDZZ

pðxjsÞpðsjsD;T ¼ 0ÞpðsDÞdsDds

¼ ppresent
1� ppresent

·

1

N

XN
i¼1

pðxijsi ¼ sTÞ
Z �Y

j 6¼i
pðxjjsj ¼ sDÞ

�
pðsDÞdsDZ �Y

i

pðxijsi ¼ sDÞ
�
pðsDÞdsD

Note that the integral over sD is outside the
product, indicating that the sD is common to all
distractor locations. In Experiment 1, there was no
such outer integral. In both the numerator and
denominator we find an integral of a product of Von
Mises distributions over sD. For convenience, we
define x0 ¼ sT and j0 ¼ jD, so that p(sD) formally
becomes a factor in the product. Then the posterior
ratio simplifies to

pðC¼ 1jxÞ
pðC¼ 0jxÞ ¼

ppresent
1� ppresent

1

N

XN
i¼1

ejicos2ðxi�sTÞ I0ðjC¼1;iÞ
I0ðjC¼0Þ

;

with

jC¼1;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j6¼i

jjcos2xj

 !2

þ
X
j 6¼i

jjsin2xj

 !2
vuut ;

jC¼0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼0

jjcos2xj

 !2

þ
XN
j¼0

jjsin2xj

 !2
vuut :

Model predictions

To produce predictions for human behavior, we
applied the (optimal or maxd) decision rule to a large
number of simulated samples x drawn using the
presented stimuli on a given trial. The result is a
prediction for the probability of reporting ‘‘target
present’’ on that trial for a given set of model parameter
values. Maximum-likelihood parameter estimates were
obtained by computing the joint response probabilities
under a large number of parameter combinations (31
values per parameter). We verified that our results were
insensitive to the range and discretization of the
parameter space.

Figure A1. Generative models. These diagrams depict the dependencies between the variable of interest (target presence, C) and the

measurements (x). Part of the statistical structure is shared (top), and part of it is specific to the experiment (bottom). 0 is the zero

vector, and 1i is a vector of zeroes with a 1 in the i
th entry. VM stands for the Von Mises distribution on (�908, 908); in parentheses are

its argument, its mean, and its concentration parameter.
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Appendix 2: Parameter estimates

Maximum-likelihood estimates of parameters in
Experiment 1

The parameters in Tables 1-4 below are the mean
precision at set sizes 1, 2, 4, and 8 (in rad�2), the scale
parameter of the gamma distribution over precision (in
rad�2), the observer’s prior probability that the target is
present, and the lapse rate.

Maximum-likelihood estimates of parameters in

Experiment 2 (VPO model)

The parameters in Table 5 below are the mean

precision at set size 1 (in rad�2), the power in the power

law dependence of mean precision on set size, the scale

parameter of the gamma distribution over precision (in

rad�2), and the observer’s prior probability that the

target is present.

Condition J1 J2 J4 J8 ppresent k

jD ¼ 0 267 6 99 64 6 15 21.4 6 4 27.2 6 4.8 0.423 6 0.024 (6.2 6 1.2)�10�2
jD ¼ 1 205 6 73 71 6 12 31.3 6 3 45 6 13 0.482 6 0.021 0.110 6 0.010

jD ¼ 8 331 6 75 133 6 27 75 6 17 28 6 15 0.508 6 0.013 0.123 6 0.018

Table 1. Equal precision, optimal decision rule (EPO).

Condition J1 J2 J4 J8 ppresent k

jD ¼ 0 (31 6 12)�10 53 6 12 17.2 6 3.6 5.44 6 0.73 5.06 6 0.32 (1.22 6 0.36)�10�2
jD ¼ 1 175 6 44 54.8 6 9.7 18.3 6 2.7 10.4 6 1.5 3.53 6 0.22 (1.22 6 0.58)�10�2
jD ¼ 8 273 6 49 92 6 14 45.5 6 9.4 37.2 6 6 2.22 6 0.12 (1.11 6 0.54)�10�2

Table 2. Equal precision, max decision rule (EPM).

Condition J1 J2 J4 J8 s ppresent k

jD ¼ 0 198 6 45 131 6 30 49 6 11 31.2 6 7.6 119 6 28 0.508 6 0.015 (4.4 6 2.8)�10�3
jD ¼ 1 218 6 23 118 6 30 51.7 6 6.1 25.8 6 4.9 120 6 27 0.522 6 0.011 (1.7 6 1.1)�10�2
jD ¼ 8 313 6 33 205 6 49 97 6 16 31 6 7 195 6 66 0.525 6 0.011 0 6 0

Table 3. Variable precision, optimal decision rule (VPO).

Condition J1 J2 J3 J4 s ppresent k

jD ¼ 0 178 6 24 99 6 13 39.1 6 7.4 18.7 6 3.4 64 6 10 3.47 6 0.34 (7.8 6 2.0)�10�3
jD ¼ 1 186 6 30 88 6 13 32.7 6 3.6 17.1 6 1.8 52.4 6 6.1 2.56 6 0.10 (8.9 6 4.1)�10�3
jD ¼ 8 306 6 49 105 6 13 49.7 6 9.1 37.2 6 8.2 51 6 16 1.89 6 0.14 (1.1 6 1.1)�10�3

Table 4. Variable precision, max decision rule (VPM).

Condition J1 b (power) s ppresent

Homogeneous jD ¼ 32.8 339 6 26 �0.83 6 0.11 147 6 38 0.506 6 0.005

Heterogeneous jD ¼ 32.8 �0.85 6 0.13 208 6 42

Table 5.
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